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ABSTRACT
Background: Chest pain is the most common symptom of aortic
dissection (AD), but it is often confused with other prevalent cardio-
pulmonary diseases. We aimed to develop deep-learning models
(DLMs) with electrocardiography (ECG) and chest x-ray (CXR) features
to detect AD and evaluate their performance.
Methods: This study included 43,473 patients in the emergency
department (ED) between July 2012 and December 2019 for retro-
spective DLM development. A development cohort including 49,071
ED records (120 AD type A and 64 AD type B) was used to train DLMs
for ECG and CXR, and 9904 independent ED records (40 AD type A and
34 AD type B) were used to validate DLM performance. Human-
machine competitions of ECG and CXR were conducted. Patient
characteristics and laboratory results were used to enhance the diag-
nostic accuracy. The DLM-enabled AD diagnostic process was pro-
spectively evaluated in 25,885 ED visits.
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R�ESUM�E
Contexte : La douleur thoracique est le symptôme le plus courant de
la dissection aortique (DA), mais celle-ci est souvent confondue avec
d’autres maladies cardiopulmonaires fr�equentes. Notre objectif �etait
de d�evelopper des modèles d’apprentissage profond (MAP) per-
mettant l’analyse de donn�ees d’�electrocardiographie (ECG) et de
radiographie pulmonaire en vue de d�etecter la DA et d’�evaluer leurs
performances.
M�ethodologie : Cette �etude portait sur le d�eveloppement r�etrospectif
de MAP à partir des donn�ees recueillies chez 43473 patients admis
aux urgences entre juillet 2012 et d�ecembre 2019. Une cohorte de
d�eveloppement comportant 49071 dossiers des urgences (120 cas de
DA de type A et 64 cas de DA de type B) a servi à entraîner les MAP à
l’analyse des donn�ees d’ECG et de radiographie pulmonaire, et 9 904
dossiers des urgences ind�ependants (40 cas de DA de type A et 34 cas
de DA de type B) ont �et�e utilis�es pour valider les performances des
Chest pain is one of the most common complaints in patients
visiting the emergency department (ED).1 Life-threatening
etiologies of chest paindsuch as acute coronary syndrome,
aortic dissection, pulmonary embolism, cardiac tamponade,
and tension pneumothoraxdpose a great challenge for
physicians and require many screening tools, including elec-
trocardiograms (ECGs), chest X-rays (CXRs), and laboratory
testing for rapid differentiation.2 Among these fatal causes,
aortic dissection (AD) is associated with very high rates of
morbidity and mortality, and the mortality rate increases 1%
to 2% per hour after initial symptoms and increases to up to
50% if unrecognized within 48 hours.3 However, several
diagnostic difficultiesdincluding low prevalence, atypical
presentations, lack of specific biomarkers, and similarity to
other acute conditionsdlead to delayed diagnosis, with an
average of 4.3 hours from arrival at the ED to diagnosis.

4,5

The misdiagnosis rates of AD range from 14% to 39%,
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Results: The area under the curves (AUCs) of the ECG and CXR models
were 0.918 and 0.857 for detecting AD in a human-machine compe-
tition, respectively, which were better than those of the participating
physicians. In the validation cohort, the AUCs of the integrated model
were 0.882, 0.960, and 0.813 in all AD, AD type A, and AD type B
patients, respectively, with a sensitivity of 100.0% and a specificity of
81.7% for AD type A. In patients with chest pain and D-dimer tests, the
DLM could predict more precisely, achieving a positive predictive value
of 62.5% in the prospective evaluation.
Conclusions: DLMs may serve as decision-supporting tools for identi-
fication of AD and facilitate differential diagnosis in patients with acute
chest pain.

MAP. L’analyse des donn�ees d’ECG et de radiographie pulmonaire a
fait l’objet de comp�etitions entre humains et machines. Les car-
act�eristiques des patients et les r�esultats des analyses de laboratoire
ont �et�e utilis�es pour am�eliorer la pr�ecision du diagnostic. Le processus
de diagnostic de la DA faisant appel aux MAP a �et�e �evalu�e de manière
prospective sur 25885 consultations aux urgences.
R�esultats : La surface sous la courbe (SSC) des modèles d’analyse des
donn�ees d’ECG et de radiographie pulmonaire �etait respectivement de
0,918 et 0,857 pour la d�etection de la DA dans une comp�etition entre
humains et machine, ce qui constituait un meilleur r�esultat que celui
obtenu par les m�edecins participants. Au sein de la cohorte de vali-
dation, la SSC du modèle int�egr�e �etait de 0,882 dans l’ensemble des
cas de DA, de 0,960 dans les cas de DA de type A et de 0,813 dans les
cas de DA de type B, la sensibilit�e et la sp�ecificit�e ayant atteint
respectivement 100,0 % et 81,7 % dans les cas de DA de type A. Chez
les patients pr�esentant des douleurs thoraciques et dont le taux de D-
dimères avait �et�e mesur�e, les MAP pouvaient donner des pr�evisions
plus pr�ecises, une valeur pr�edictive positive de 62,5 % ayant �et�e
obtenue dans le cadre de l’�evaluation prospective.
Conclusions : Les MAP peuvent servir d’outils d’aide à la d�ecision dans
le d�epistage de la DA et faciliter le diagnostic diff�erentiel chez les
patients pr�esentant des douleurs thoraciques aiguës.
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leading to inappropriate treatment, such as administration of
antiplatelet or anticoagulant agents, which results in an
increased risk of major bleeding and mortality.

6,7 Early
recognition of AD followed by prompt surgical or medical
treatment are key to improving patient survival.

Although the diagnostic imaging techniques for AD rec-
ommended in current guidelines, including contrast-enhanced
computed tomography (CT) and transesophageal echocardi-
ography, provide > 95% sensitivity and specificity,8 these
examinations are expensive and invasive. The decision to
perform advanced imaging is challenging in uncertain clinical
circumstances.4,5 In patients with AD, ECGs exhibited
nonspecific ST-T changes, ST-segment depression, T-wave
inversion, ST-segment elevation, or new Q waves,9 whereas
CXRs exhibited a widened mediastinum or aortic knob with
sensitivities of 67% to 81%.10,11 ECGs and CXRs have
limited sensitivity to AD and cannot completely exclude the
possibility of AD.5,9 To reduce the misdiagnosis of AD and to
avoid the overuse of potentially harmful tests, a precise
method with high sensitivity is needed urgently.

Deep-learning techniques, a subfield of artificial intelli-
gence (AI), have rapidly evolved in the past decade and pro-
vide a novel capability for disease diagnosis.12 Compared with
the traditional machine-learning algorithm with manual
feature engineering, deep-learning models (DLMs) can extract
features unrecognizable by humans with automatic feature
engineering.13 Incorporating ECGs with DLMs has been re-
ported to enable identification of atrial fibrillation during si-
nus rhythm and estimation of a person’s sex and age, which
demonstrates the potential superhuman capability of AI in
clinical diagnosis and prediction.14,15 AI algorithms have also
shown remarkable progress in image-recognition tasks with
broad applications.16 With the advancement of AI models, we
aimed to use deep-learning techniques to identify features of
AD on ECGs and CXRs to improve unmet needs.

In our study, we trained an ECG-based and CXR-based
DLM to predict different types of AD. The performance of
both trained models and physicians on AD prediction was
compared, and the predictors of AD diagnosis in the study
were evaluated. Finally, we analyzed the applications and
predictive values of DLMs in different subgroups.
Methods

Data source

The ethical review was approved by the Institutional Re-
view Board of Tri-Service General Hospital, Taipei, Taiwan
(IRB A202005151 and C202105049). Each sample in this
study was based on 1 ED record, which received at least 1
ECG test or at least 1 CXR test. We only used the first ECG
or CXR test for each record and excluded the following test to
simulate the emergency situation. The ECG signal was
recorded in a digital format with a sampling frequency of 500
Hz and 10 s for each lead. The CXR image was recorded in
DICOM format with a resolution of > 3000 � 3000 pixels.
The details of the collection of patient characteristics and
laboratory tests are given in the Supplemental Appendix S1.
Aortic dissection

The definite diagnosis of AD was made using the following
criteria: the presence of an intimal flap with a true lumen and
a false lumen or the presence of intramural hematoma in the
aorta as shown on CT angiography; involvement of the
ascending aorta (defined as type A) or involvement confined
to the aortic arch or descending aorta (type B). Intramural
hematoma was defined as AD in our study because of its
similarity in management and prognosis with typical AD.8 All
cases of AD were reviewed by our research team to ensure
quality. Non-AD cases were collected from the ED during the
same period. Patients with suspected AD without CT di-
agnoses were excluded from the study.



Figure 1. Development and validation cohorts’ generation and summary of study process. Each ECG dataset record corresponded to an ECG, and
each CXR dataset record corresponded to a CXR. Records in merged validation set were their intersection. AD, aortic dissection; CXR, chest X-ray;
DLM, deep-learning model; ECG, electrocardiogram; N, number of patients; n, number of records.
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Retrospective development and validation datasets

Patients who presented to our ED from July 2012 to
December 2019 were included in this study, and a total of
43,473 patients were allocated to several datasets. Figure 1
illustrates the overall data set generation process. The devel-
opment cohort included 35,270 patients who presented to our
ED before June 2018. The patients in the development
cohort were divided into 5 subgroups for 5-fold cross-
validation, and the details are given in the following section.
There were no overlapping patients among the 5 subgroups.
The 45,806 ED records with ECG tests obtained from
33,222 patients were allocated to an ECG development set,
and there were 84 AD type A cases and 32 AD type B cases. A
total of 43,365 CXRs from 30,309 patients were allocated to
the CXR development set, and there were 74 AD type A cases
and 49 AD type B cases. These 2 development sets were used
to train the corresponding DLMs. To integrate the informa-
tion from ECG, CXR, and other laboratory tests, we merged
these 2 two data sets into a merged development set that
included 40,100 records from 28,258 patients (38 AD type A
cases and 17 AD type B cases). Each record in the merged
development set underwent both ECG and CXR tests.

The validation cohort included patients who presented to
our ED from July 2018 to December 2019, which excluded
patients in the development cohort. A total of 8203 patients
were included in the validation cohort. The 8905 ED records
with ECG tests from 7715 patients were allocated to an ECG
validation set, and there were 36 AD type A cases and 30 AD
type B cases. The 8430 records with CXRs from 7014
patients were allocated to a CXR validation set, and there were
18 AD type A cases and 20 AD type B cases. A merged
validation set included 7431 records and was allocated to both
ECG tests and CXRs from 6500 patients (14 AD type A cases
and 16 AD type B cases).

Prospective evaluation

A prospective cohort study, including all patients visiting
the ED between February 1 and July 31, 2021, was con-
ducted to evaluate the DLMs for AD diagnosis in clinical
practice. The methods of prospective cohort study are
described in the Supplemental Appendix S1.

Implementation of the DLM

The ECG-DLM was developed based on the ECG12Net
architecture developed previously17 for detection of AD. The
DLM was trained using an ECG development set with 2
categories: AD and non-AD. The standard input format of
ECG12Net has a length of 1024 numeric sequences. In the
training stage, we randomly cropped 1024 sequences as input.
In the inference stage, 9 overlapping lengths of 1024 sequence
intervals sampled from the original 5000 lengths were used to
generate nine probabilities for each ECG. The CXR-DLM
training process was revised from a previous study,18 which
was based on an architecture called 121-layer DenseNet.19 We
resized our CXR images to allow the short side to be 256
pixels, without changing the aspect ratio. In the training stage,
we randomly cropped a 224 � 224 pixel image as input and
applied a random lateral inversion with 50% probability. In



Figure 2. Performance of recognition of aortic dissection in the human-machine competitions. The top and bottom panels show ECG competition
and CXR competition sets, respectively. The red and blue points represent visiting staffs and residents, respectively. The triangular and square
marks represent the emergency physicians and cardiologists, respectively. AD, aortic dissection; AUC, area under the curve; CV-R, Resident in
Cardiology; CV-V, Visiting Staff in Cardiology; CXR, chest X-ray; ECG, electrocardiogram; ER-R, Resident in Emergency Department; ER-V, Visiting
Staff in Emergency Department; prob, probability; sens, sensitivity; spec, specificity.
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the inference stage, a 10-crop evaluation was used to generate
10 probabilities for each CXR.20 The optimal details are
provided in the Supplemental Appendix S1.

We used 5-fold cross-validation, in which 4 images were
used as the training subset and 1 as the tuning subset in each
fold for totally trained 5 ECG DLMs and 5 CXR DLMs.
Models M1 to M5 were derived from 5-fold cross-validation,
and model M0 was the mean prediction based on M1 to M5.
The generation of the ECG and CXR scores is summarized in
the Supplemental Appendix S1 and Supplemental Figure S1.
The ECG and CXR scores were the average of standardized
probabilities with a cutoff point of 0.5 for AD predicted via 5
DLMs in each training subset using 5-fold cross-validation.
We used logistic regression to integrate the probabilities pre-
dicted from ECGs and CXRs in each tuning subset and
generated the AI score, and we further enhanced the accuracy
using laboratory data.

Statistical analysis and model performance assessment

The details of the human-machine competition and the
statistical analyses are given in the Supplemental Appendix S1,
and we used a significance level of P < 0.05 throughout the
analysis. In summary, the primary analysis was to evaluate the
performance of DLMs in diagnosis of AD via area under the
curve (AUC), sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV). The secondary
analysis aimed to analyze the effects of patient characteristics
on performance of DLM. Therefore, we used AUC ranking
and logistic regression analysis of each characteristic for
detecting AD (Supplemental Appendix S1).
Results

Primary analysis

Patient characteristics are given in the Supplemental
Tables S1-S3 and Supplemental Appendix S2. The human-
machine competition for AD recognition is summarized in
Figure 2. The AUCs of the ECG-CXR score for predicting all
AD, AD type A, and AD type B were 0.918/0.857, 0.936/
0.970, and 0.898/0.752, respectively. The detection of AD
type A exhibited better performance than AD type B in both
the ECG score (sensitivity/specificity: 87.0%/87.7%) and
CXR score (sensitivity/specificity: 90.9%/83.6%), which were
better than those of all clinicians. However, the CXR score
was not superior to all clinicians in detecting AD type B.
Generally, both ECG and CXR scores had the highest global
performance of AD recognition in the human-machine



Figure 3. Performance of artificial-intelligence (AI) system. The area under the curves (AUCs) of models M1 to M5 (derived from 5-fold cross-
validation) are shown as a black x in each tuning subset, and the AUCs of overall model M0 (the mean prediction based on M1 to M5) are
shown as bar heights with corresponding 95% confidence intervals (CIs). The left, middle, and right panels show the performance in detecting all
aortic dissection (AD), AD type A, and AD type B, respectively. We selected the conditions with highest AUC to present the receiver operating
characteristic (ROC) curve as shown on the right. CXR, chest X-ray; ECG, electrocardiogram; npv, negative predictive value; ppv, positive predictive
value; sens, sensitivity; spec, specificity.
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competition (Supplemental Fig. S2). The AUCs of models
M1 to M5 (derived from 5-fold cross-validation) in the cor-
responding tuning sets and the model M0 in the validation
sets, representing AUCs of the DLM (mean prediction based
on M1 to M5), are summarized in Figure 3. The AUCs of the
AI score (AUC of green bars ¼ 0.882, 0.960, and 0.813 for all
AD, AD type A, and AD type B, respectively), the combi-
nation of ECG and CXR scores, were higher than those in the
separate ECG score (AUC of red bars ¼ 0.837, 0.837, and
0.838 in all AD, AD type A, and AD type B, respectively) and
CXR score (AUC of blue bars ¼ 0.806, 0.906, and 0.719 in
all AD, AD type A, and AD type B, respectively), especially in
AD type A, with a sensitivity of 100.0% and a specificity of
81.7%. In the differentiation of AD type A and AD type B,
the ECG, CXR, and AI scores all exhibited limited perfor-
mance (Supplemental Fig. S3). We also analyzed the effect of
each ECG lead on AD prediction (Supplemental Fig. S4).
Lead V5 had the best AUC of 0.729 for detection of AD,
which also exhibited the highest AUC of 0.754 in AD type A.
Patient characteristics for diagnosis of AD

The univariate and multivariate analyses of patient char-
acteristics for diagnosis of AD are shown in Supplemental
Figure S5. After multivariable adjustment, the D-dimer, he-
moglobin, percentage of lymphocytes, and percentage of
basophils all exhibited significant predictive roles. Notably,
the D-dimer played the most critical role and was even a
better indicator than the combination of all 4 indicators for
the prediction of AD (Fig. 4A). Therefore, we used the D-
dimer test to enhance the DLM for diagnosis of AD.
Figure 4B shows the AUCs of ECG, CXR, D-dimer, and the
combination models for AD prediction. ECGs alone could
predict all types of AD, whereas CXRs alone exhibited poor
performance in prediction of AD type B. Application of the
D-dimer improved the performance of the ECG, CXR, and
AI scores in predicting all types of AD. The AUCs of the
combination of the AI score and D-dimer were 0.910, 0.963,
and 0.850 for the prediction of all AD, AD type A, and AD
type B, respectively. Detailed results of DLMs enhanced by
the D-dimer in each validation set are shown in Supplemental
Fig. S6.
AI models for diagnosis of AD

Supplemental Figure S7 summarizes the performance of
DLMs in subsets of the validation cohort. In patients who
underwent the D-dimer test, the PPVs of combined ECG and
CXR were 3.5%, 2.5%, and 1.0% for all AD, AD type A, and
AD type B in the merged validation set, respectively. The
additional D-dimer combined with ECG and CXR enhanced
the PPVs to 6.2%, 4.4%, and 2.0% for all AD, AD type A,



Figure 4. Performance of patient characteristics and artificial intelligence (AI) system in detecting aortic dissection (AD). (A) Receiver operating
characteristic (ROC) curve analysis of blood-cellerelated indicators and D-dimer in validation cohort. The combination scores are calculated by
logistic regression. The area under the curves (AUCs) in overall development samples are shown as bar heights with corresponding 95% confidence
intervals (CIs). Patients in this analysis received all related laboratory tests (n ¼ 2510/2293/2061 in the ECG/CXR/merged validation set). (B)
AUCs of models M1 to M5 (derived from 5-fold cross-validation) are shown as a black x in each tuning subset, and the AUCs of overall model M0
(the mean prediction based on M1 to M5) are shown as bar heights with corresponding 95% CIs. The left, middle, and right panels show the
performance in detecting all AD, AD type A, and AD type B, respectively. CXR, chest X-ray; ECG, electrocardiogram.
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and AD type B, respectively. We also stratified the patients in
the validation set based on common chief complaints during
triage. The calculations of sensitivities, specificities, PPVs, and
NPVs of DLMs in different subgroups are given in
Supplemental Figure S7 and Supplemental Tables S4-S12.
Among the complaints of coma, chest pain, and abdominal
pain, chest pain was the most common presentation in pa-
tients with AD.8 In patients with AD, common ECG mani-
festations were nonspecific ST-T changes and left ventricular
hypertrophy, whereas the CXR results exhibited prominent
aortic knob and widened mediastinum (Supplemental
Figs. S8-S12). A comparison of chest pain patients with all
patients revealed that the AUCs of combined ECG and CXR
were similar, whereas the PPVs were a factor of 2 to 4 higher
in patients with chest pain. Furthermore, the combination of
D-dimer, ECG, and CXR in patients with chest pain per-
formed better than in all patients, with AUCs of 0.943 (95%
confidence interval [CI], 0.898-0.989) for all AD, 0.974
(95% CI, 0.948-1.000) for AD type A, and 0.892 (95% CI,
0.787-0.996) for AD type B, with a sensitivity of 90.0%, a
specificity of 93.5%, and a PPV of 15.5% in AD type A.

The prospective evaluation of DLMs in patients with or
without chest pain is shown in Supplemental Figure S13. As
shown in Figure 5, AI identified 8 patients (AD type A ¼ 4,
AD type B ¼ 1, and non-AD ¼ 3, with PPV for AD ¼
62.5%) in 2249 patients with chest pain and 25 patients (AD
type A ¼ 3 and non-AD ¼ 22, with PPV for AD ¼ 12.0%)
in 23,636 patients without chest pain. The sensitivity/speci-
ficity of AD type A were 80.0%/99.9% and 75.0%/99.9% in
patients with and without chest pain, respectively. AD type B
was more frequently unidentified than AD type A. The per-
formance of the DLM in the prospective cohort exhibited a
lower sensitivity but a higher specificity and PPV than in the
validation cohort owing to the series test-study design.
Discussion
In our study, we developed a series of DLMs with ECG

and CXR analyses at the ED to detect AD. The integrated
model of ECG and CXR results reached an AUC of 0.960 for
detecting AD type A, with a sensitivity of 100.0% and a
specificity of 81.7%. Applying our models to patients with
chest pain or adding AI-enabled D-dimer analysis could
further improve the accuracy of AD diagnosis. Importantly,
our AI models provided an excellent diagnostic support sys-
tem to exclude AD type A in patients with acute chest pain.

The ECG presentation of ST-segment elevation in patients
with AD would prompt physicians to focus on acute coronary
syndrome and would be a disaster once diagnosis of patients
with AD is delayed and they are treated with antiplatelet and



Figure 5. Prospective evaluation of artificial intelligence (AI) system. Results of the deep-learning model for artic dissection (AD) identification in
patients with and without chest pain. Each point on the bar represents an AI-unidentified AD case. CXR, chest X-ray; ECG, electrocardiogram.
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anticoagulant agents. In the presented ECG model, AD type
A and AD type B seemed to be evaluated by the subtle
morphologic changes of ST segments and T waves in
nonspecific leads (Supplemental Figs. S8-S11). Interestingly,
the presentation of ST-segment elevation in the ECG was
considered a non-AD feature in the model, and the same
ECG could still be correctly recognized as an AD by other
predominant features (Supplemental Fig. S8). Although the
mechanisms of these ECG features of AD are unclear, these
findings may provide valuable information for future research.

Although the presence of a widened mediastinum provides
diagnostic clues for AD, CXRs are of limited value when
dissection is confined to the ascending aorta, which accounts
for 10% of all AD type A.10,21 Our CXR model was trained
by more than 40,000 CXRs and reached a physician level of
accuracy in AD identification. The CXR model had a sensi-
tivity of 94.4% in recognition of AD type A, whereas the
sensitivity of AD type B was only 50.0%. AD type A might
affect both the ascending and descending aortas and thus
present a larger area involved than AD type B on the CXR,
indicating more significant evidence for the model to recog-
nize AD. This result demonstrates the prominent application
of the CXR model in the detection of AD type A.

Compared with previous studies using machine-learning
models to screen for AD in inpatients,22,23 our study
focused on patients visiting the ED with high clinical rele-
vance. Instead of using results from a series of blood tests in
previous studies, we applied DLMs mainly on ECG and CXR
to identify the features of AD, which provided much direct
and critical information. In addition, we analyzed the
laboratory indicators in our validation cohort and found that
combining patient characteristics, especially D-dimer, with
ECG and CXR enhanced the diagnostic power compared
with using patient characteristics or ECG or CXR alone. Our
integrated DLMs achieved AUCs of 0.910 and 0.963 in
detecting all AD and AD type A, respectively, which are
similar to previous studies with an AUC of 0.857 in detecting
all AD.22 Additional studies are necessary to evaluate the
model performance of our integrated model in collaboration
with the previous machine-learning data from inpatient blood
sampling and patient characteristics.

Our AI model has numerous clinical applications. First, the
use of chest CT increased rapidly despite steady patient vol-
ume and severity in previous studies, with a rate of 40 to 60
CT scans per 1000 ED visits.24,25 The DLMs could identify
AD among patients with chest pain with perfect sensitivity,
thereby excluding those with low probability to avoid overuse
of CT. Second, DLMs could be applied to distinguish AD
involving coronary ostia from primary acute coronary diseases
by ECG presentations, which is challenging in the ED. Third,
by providing physician-level suggestions for shared decision
making, the algorithm could assist in the diagnosis of AD,
such in the case of a patient with chronic kidney disease
requiring contrast-enhanced CT for definite diagnosis.
Fourth, the algorithm could help physicians focus on selected
patients, especially in nontertiary hospitals whose staff mem-
bers have less familiarity with AD.5 Finally, the ECG model
could be used in ECG machines in ambulances to further
shorten the time from onset of symptoms to definite
diagnosis.
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Limitations

Our study has several limitations. First, AI models were
developed with patients recruited only from a tertiary hospital
in Taiwan. Although the enrolled patients had similar char-
acteristics to those of an international registry cohort,3 and we
applied several methods to reduce class imbalance and over-
fitting of DLMs, the generalization of DLMs should be
evaluated carefully. The small sample size of patients with AD
resulted in wide CIs in our results and restrained the actual
performance of DLMs in clinical practice. Further large-scale
prospective studies are warranted to confirm the performance
of DLMs. Second, the lack of universal CT scanning is one of
the limitations of our study, but the low incidence of AD in
the general population and even in patients presenting with
acute chest pain at the ED contributes to the extremely low
false-negative rate. Third, the PPV of the algorithm was
relatively low because of the low prevalence of AD. However,
by using the model’s high sensitivity, physicians could rapidly
identify high-risk patients with AD and take appropriate ac-
tion in time. Fourth, the performance of each ECG for AD
recognition was not good enough, limiting its application in
wearable devices. Finally, we could not completely understand
how the algorithms make predictions, even with the help of
visualization analysis. The black box in the DLMs might
hinder the implementation of AI models.26 To understand the
AI decisions, we used class-activation mappings to display the
focus of the algorithm on ECGs and CXRs (Supplemental
Figs. S8-S12).27,28 Future research on the decision-making
process of the algorithm is required to increase the clinical
practicability.
Conclusions
This is the first DLM using ECG and CXR features to

detect AD, with an AUC of 0.960 for AD type A. With the
assistance of DLMs, physicians could stratify patients with
chest pain at risk of AD and reduce unnecessary examinations.
Additional large-scale studies are warranted to confirm the
performance of the DLMs.
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